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Abstract. Among an infinite number of possible folds, nature has chosen only about 1000 distinct folds
to form protein structures. Theoretical studies suggest that selected folds are intrinsically more designable
than others; these selected folds are unusually stable, a property called the designability principle. In this
paper we use the 2D hydrophobic-polar lattice model to classify structures according to their designability,
and Langevin dynamics to account for their time evolution in the presence of shear flow. We demonstrate
that, among all possible folds, the more designable ones are easier to unfold due to their large number of
surface-core bonds.

PACS. 87.15.-v Biomolecules: structure and physical properties – 87.15.Aa Theory and modeling;
computer simulation – 87.15.By Structure and bonding – 87.15.He Dynamics and conformational changes

1 Introduction

In the human body alone, the number of different pro-
teins is estimated to be in the range of 50 000–100000 and
this number is even larger in the biological world. How-
ever, when classified in terms of their three dimensional
structures, only 1000 families of protein folds are expected
to exist [1]. These structural templates for sequences of
amino acids can be explained [2–4] in terms of minimal-
istic models where the positions of amino acids are re-
stricted to lattice sites and the interaction energy between
residues is described by a coarse-grained model. In this
minimalistic approach, structures are classified according
to their designability, i.e. the number of amino acid se-
quences they can accommodate. While some structures
are not used to describe proteins, i.e. their designability is
zero, a few structures are designed by an enormous num-
ber of sequences and are, therefore, stable to amino acid
mutation – a desirable and natural feature for evolution.
Also, highly designable structures emerge as being ther-
modynamically stable [2] and having protein-like symme-
try [2,3,5].

Designability has also been shown to have dynami-
cal implications: calculations suggest [6] that sequences
of amino acids that fold into highly designable structures,
and are thermodynamically stable, present a faster folding
kinetics than random sequences – as expected for real pro-
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teins. Another important dynamical aspect of proteins is
their reaction to external force fields: in their natural en-
vironment, proteins have to cope with forces during their
activities. It might be expected that the set of structures
which constitute recurring protein folds react differently
to forces than other folds. In this paper we confirm this ex-
pectation. We study the dependence of the phase diagram
on designability and show that for any combination of
temperature and shear, high-designable structures are the
easiest structures to unfold. This result is a consequence of
how the backbone (involving strong covalent bonds) and
weak bonds are distributed in these structures.

This article is organized as follow: below we review
the relation between designability, thermodynamic stabil-
ity and surface-to-core bonds. Following this, the model
to study unfolding is introduced, together with the math-
ematical framework to characterize this process. Results
are then presented, followed by a discussion.

2 Designability

The goal of this section is to review the relation between
designability and thermodynamical stability for the
hydrophobic-polar (HP) model in the two-dimensional
compact triangular lattice [9] which describes equilibrium
structures of our protein model in the next section.
In the HP model [10] a protein is considered to be
a chain made of polar (P) and hydrophobic (H) like
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amino acids. Hydrophobicity is the only aspect of amino
acids which is taken into account since it is considered
the main driving force for folding [11]. In this coarse-
grained approach the energy of a sequence folded into
a structure is given by the short-range contact interaction:

H =
∑

i<j

εi,j

[
δ(|�ri − �rj | − σ) − δj−1,i

]
(1)

where �ri is the position of the i monomer and σ is dis-
tance between lattice sites. The first delta function al-
lows only nearest-neighbors interaction and the second
delta excludes interaction between residues which are
adjacent along the backbone. The interaction energy be-
tween monomers i and j, εi,j, can assume 3 values de-
pending on the type of monomers bounded: H-H, H-P, P-
P. These values are chosen to minimize the Hamiltonian
when H like amino acids are buried inside the protein and
P like amino acids are left on the surface. Following Li
et al. [2], we use: εHH = −2.3, εHP = −1 and εPP = 0.
These values are given in arbitrary units.

In this work, proteins are 25 amino acids long and the
different structures they can assume are restricted to com-
pact self-avoiding walks on a 5× 5 triangular lattice – see
Figure 1d for an example of structure. The number of in-
dependent structures that can be formed under these con-
ditions is 352 375. Now, given a sequence of amino acids,
each structure can be scanned for its native state – i.e. its
non-degenerate ground state. Sequences with degenerate
ground states are believed to be unrealistic since their na-
tive states are not well defined. These sequences are there-
fore ignored. For our small protein, the ground state of all
its 225 binary sequences can be computed and we count
the number of sequences that fold uniquely into a struc-
ture. This number corresponds to the designability of the
given structure. We find that among the 352 375 structures
only 135 216 (∼38%) are non-degenerate ground states of
at least one sequence.

The distribution of designability for the 135 216 struc-
tures is given in Figure 1a. Compact structures are very
different when in comes to designability: many struc-
tures have a low value of designability, while just a rare
number of folds accommodate more than 500 sequences.
These high-designable structures are on average more sta-
ble thermodynamically than other structures. This can be
shown by computing the energy difference between the
ground state Eo and the first excited state E1 of a se-
quence: Egap = E1 − Eo. This energy difference is then
averaged over sequences that have the same ground state
and it is a measure of the stability of the given ground
state. The correlation between Egap and designability is
given in Figure 1b where Egap is averaged over a given
range of designabilities.

A geometrical property of these selected structures is
the large number of bonds connecting surface monomers to
core monomers [5,12,13]. This is illustrated in Figure 1c
where the number of bonds connecting surface to core,
averaged over structures of a given range of designability,
is plotted against designability. A systematic increase of
surface-to-core bonds with designability is observed. An

Fig. 1. (a) Histogram of designability. (b) Dependence of en-
ergy gap on designability. (c) Number of bond connecting sur-
face to core residues versus designability. (d) Fifth most des-
ignable structure.

example of structure which has a large number of bonds
connecting surface to core residue is the fifth most des-
ignable structure – shown in Figure 1d.

3 Model

In the previous section we have shown that the surface of
high-designable structures is differently connected to the
core of the protein when compared to the surface of low-
designable structures – Figure 1c. Therefore, since unfold-
ing starts by unbinding surface monomers from the core,
it might be expected that the dynamics of unfolding de-
pends on designability. To investigate this idea, we present
in this section a model to probe the dynamics of structures
in the presence of applied forces.

In this model, the energy of each structure is ac-
counted for by two types of potentials: monomers which
are adjacent along the backbone of the protein interact
through a harmonic potential otherwise the interaction
is via a Lennard-Jones potential. The harmonic bond
ensures that the backbone of the protein is preserved
during the simulation while monomers bound by a
Lennard-Jones potential can be driven apart, changing
the structure of the protein. In this way, the potential
energy of the chain is:

V (ri,j)=
N−1∑

i=1

k

2
(
ri,i+1−σ

)2+
1
2

∑

j �=i±1
j �=i

ε
[( σ

ri,j

)12

−2
( σ

ri,j

)6]

(2)
in the last sum, i and j range from 1 to N and ri,j is
the distance between monomers i and j. ε and σ are the
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binding energy and equilibrium length of monomers. A
cut-off distance of 2.5σ is used for the Lennard-Jones po-
tential and k is the spring constant of the harmonic poten-
tial. Notice that the model does not discriminate between
P and H amino acids such that the dynamics of unfold-
ing can be related directly to the topology of the native
structure independently of amino acids sequences. Each of
the 135 216 designable structures described in the previ-
ous section corresponds to a local minima of this potential
energy and they can be viewed as equilibrium structures.

The fluid is modeled by including a friction and a
random term fi(t) to the force acting on each monomer
(Langevin dynamics). The intensity of the random force is
given by the fluctuation-dissipation theorem. The friction
force on each monomer is proportional to the relative ve-
locity of the monomer with respect to the fluid: −γ�vrel (γ
is the friction coefficient). For the velocity of an element
of the fluid located at position �r, i.e. �r = x x̂+y ŷ, we use
the velocity profile: �vfluid(�r) = Sy x̂, where S is the shear
rate. Inside such a fluid flow, an extended elastic object
rotates and gets stretched with an intensity dependent on
its orientation with respect to the fluid flow.

Putting the forces that act on a monomer together, its
equation of motion inside the elongational flow is:

M
d2�ri

dt2
=

∑

j

�F (rij) − Mγ[�̇ri − �vfluid(r)] + �fi(t) (3)

where �ri and �̇ri are the vectors representing the posi-
tion and velocity of monomer i. Here, M is the mass
of a monomer, �F is the force computed from the inter-
acting potential. For simplicity, σ, ε and M are chosen
to be one. The spring is chosen to be five times stiffer
than the Lennard-Jones potential: k = 5(72ε/σ2). Simula-
tions are carried out in units of the fastest atomic vibra-
tion: τo = 2π

√
k/M ; and the friction constant is given a

value of: γ = (τo/4)−1.

4 Results

Now we quantitatively evaluate how structures with dif-
fering designabilities react to both thermal fluctuations
and an applied shear force. Rather than simulate all
135 216 structures, we sample as follows. We study all the
1500 structures with highest designability, ranging from
200 to 700. For the more numerous structures which are
less designable, we consider eight randomly-chosen struc-
tures for each designability. This ensemble of 3100 struc-
tures is representative of the diversity of folds.

4.1 Shear induced unfolding

Here we study how structures differing in designability
react to an applied shear force. At zero temperature, a
structure only unfolds if the shear rate is greater than
Sc – i.e. when the barrier is zero. Therefore if (at zero
temperature) a structure does not unfold at a given So

Fig. 2. (a) Dependence of the critical velocity flow on the
number of surface-core bonds. (b) The dependence of Sc on the
average designability of structures having the same number of
surface-core bonds. Lines in these figures are just a guide to
the eye.

but unfolds at So + α, the critical shear Sc ≡ So + α/2. α
being a numerical parameter accounting for the precision
of the calculation. The simulational time was 5000 atomic
vibrations. To be statistically significant we probe eight
copies of each structure to different values (all differing
by α = 0.001) of the velocity flow – each copy having a
different orientations with respect to the fluid. Notice that
Sc is proportional to the stability of a structure.

Results are presented in Figure 2a where the depen-
dence of Sc on the number of times the backbone connects
a surface to a core monomer is shown. Structures with a
backbone zigzagging many times between surface and core
are sensitive to small gradients in contrast to more linear
backbone structures. In Figure 2b we illustrate the depen-
dence of Sc on designability. In this figure, both Sc and
designability has been averaged over structures having the
same number of surface-to-core bonds. A clear correlation
between these quantities indicates that structures which
are highly designable require less shear to unfold.

4.2 Thermal induced unfolding

In this subsection we are concerned with thermally in-
duced unfolding. Therefore the shear rate of our model is
set to zero such that the only cause of unfolding is thermal
fluctuations. We compute the unfolding time of the ensem-
ble of 3100 structures at a temperature of 0.50 (in units
of ε). In our simulations, the unfolding time τ is com-
puted by tracking the population of folded chains. The
number of chains that unfold at time t (dN/dt) is propor-
tional to the population of folded chains N(t). In this case,
N(t) = No exp(−Rt) where R is the rate of unfolding and
the characteristic unfolding time is given by the inverse of
the rate τ = 1/R. We use 1000 copies (i.e. No = 1000) of
each structure in the simulations. The larger the unfolding
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Fig. 3. Dependence of the unfolding time on (a) number of
surface-to-core monomers and (b) designability.

time of a structure, the more stable it is to thermal fluc-
tuations. In Figure 3a the unfolding time is plotted versus
the number of surface-to-core bonds. The clear downward
trend of this figure indicates that structures with many
surface-to-core bonds unfold faster. Figure 3b presents the
correlation between unfolding time and designability. This
figure was obtained by averaging both time of unfolding
and designability over structures having the same number
of surface-to-core bonds. Again a clear correlation indi-
cates that on average, structures with low designability
are more robust to thermal fluctuations.

4.3 Designability dependent phase-diagram

We now study how the designability of a protein affects its
phase-diagram. This diagram is constructed by comput-
ing the applied shear rate required to unfold a structure
in 5000 units of time at different temperatures. This shear
rate is then averaged over structures having the same num-
ber of surface-to-core bonds. Notice that the computed
shear delimits two regions of the diagram: folded struc-
tures are found below this shear and unfolded structures
above it. In Figure 4 the phase-diagram is shown for struc-
tures having 4 and 15 surface-to-core bonds. These two
sets of structures have an average designability of 59.71
and 299.55 respectively. At any temperature, the set of
structures with lower designability is more robust and re-
quire a higher shear rate to unfold. One can therefore state
that high designable structures are easier to unfold than
low designable ones.

5 Discussion

The relation between thermodynamical stability and des-
ignability, called the designability principle, has been
shown in Figure 1b: highly designable structures are more

Fig. 4. Phase diagram of the set of structures having 4 and 15
surface-to-core bonds – filled and open circles, respectively. The
latter (former) has an average designability of 299.55 (59.71).

stable thermodynamically than low designable ones. In
marked contrast to the designability principle, we have
shown that highly designable structures are easier to un-
fold than low designable ones – i.e. they are weaker. The
implication is that, although highly designable structures
are more stable in the folded region of the phase diagram,
they require less perturbation to unfold. We speculate this
may be related to protein flexibility.

A qualitative explanation is as follow. We have shown
that highly designable structures are weaker due to the
large number of surface-to-core bonds they contain. Con-
sequently, these structures contain many small domains
(i.e. sub-structures). These are easy to unfold: only a few
bonds need to rupture in order to separate the domains.
In contrast, low designable structures have few surface
to core bonds. As a result, many weak bonds are aligned
forming domains where monomers are correlated over long
distances. For those structures, the time of unfolding is
dominated by the slow unbinding of the largest domain.
Therefore, these low designable structures can be said to
be stronger.

Also, the presence in large number of surface-to-core
bonds makes it difficult to transform highly designable
structures into other distinct compact shapes through lo-
cal rearrangements of the backbone [3]. Such a transforma-
tion would require the partial unfolding of the structure,
which is unlikely in the region of the phase diagram where
folded structures are at equilibrium, followed by folding
into the new shape. Therefore, the presence of surface-to-
core bonds might explain why high designable structures
are thermodynamically stable but easier to unfolding. Fi-
nally, we expect interesting insights to be obtained by ex-
panding the model to three dimensions and including hy-
drodynamics effects (i.e. modeling the solvent explicitly).
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